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Known Shortcomings:

(1) Directives to the 802.16e editor should be interpreted by the 802.22 editors and discarded after being actioned.

(2) Renumbering of sub-clauses, equations, tables and figures appropriately (e.g. 802.16e sections beginning 8.4.9.2.5 become 8.5.2.3 in 802.22)
(3) The required “Coding_Information” or “Coding_Type” fields of the TLV parameters are not defined in this text.  These fields are needed to select between the BCC (mandatory), Turbo Codes (optional), LPDC codes (optional), and any other codings.  802.16e used fields of 3 bits, because the Turbo Codes have several variants and reserved combinations were left for extensibility.

(4) The word “sub-channel” should be replaced with the word “slot” throughout.  This editorial directive appears in the 802.16e specification, but was never actioned in the LDPC sections.
(5) The editors should insert the referenced Table 317 of the 802.16e specification into the 802.22 draft and number it and its reference appropriately.
(6) The concatenation rules in 802.16e (and the codeword sizes) were picked to agree with the MAC allocation of OFDM symbols for OFDMA.  Hence the 19 block sizes.   If 802.22 ends up using a different OFDMA alloocation scheme than 802.16e (not based on 6 subcarriers) or eliminating OFDMA, then the encoding rules could be potentially simplified (codewords deleted).  If we were to allow a lot more flexibility of the allocation of OFDMA symbols than in 802.16e, we would have to revisit the 802.16e encoding scheme, in general.  For instance, if symbols were allocated not in blocks, but in units of 1, then a mechanism shortening or shortening with puncturing (a la 802.11n) would be more suitable.
(7) The 802.16e specification allows for multiple transmit antennas in their OFDMA allocation.  If this feature is not implemented in 802.22, then the 3 extra columns of Table 333b should be deleted.  In this case, it might even make sense to eliminate the table and replace it with a simple equation.
Verbatim 802.16e LDPC Specification:

8.4.9.2 Encoding

<add text to the end of the ‘Concatenation’ paragraph starting at line 39>

, and for the LDPC encoding scheme (see 8.4.9.2.5) the concatenation rule is defined in 8.4.2.9.5.4.

8.4.9.2.5 Low Density Parity Check Code (optional)

8.4.9.2.5.1 Code Description

The LDPC code is based on a set of one or more fundamental LDPC codes.  Each of the fundamental codes is a systematic linear block code.  Using the described methods in 8.4.9.2.5.2 Code Rate and Block Size Adjustment, the fundamental codes can accommodate various code rates and packet sizes. 

Each LDPC code in the set of LDPC codes is defined by a matrix H of size m-by-n, where n is the length of the code and m is the number of parity check bits in the code. The number of systematic bits is k=n-m. 

The matrix H is defined as
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where Pi,j is one of a set of z-by-z permutation matrices or a z-by-z zero matrix. The matrix H is expanded from a binary base matrix Hb of size mb-by-nb, where 
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, with z an integer ( 1. The base matrix is expanded by replacing each 1 in the base matrix with a z-by-z permutation matrix, and each 0 with a z-by-z zero matrix. The base matrix size nb is an integer equal to 24.

The permutations used are circular right shifts, and the set of permutation matrices contains the z(z identity matrix and circular right shifted versions of the identity matrix. Because each permutation matrix is specified by a single circular right shift, the binary base matrix information and permutation replacement information can be combined into a single compact model matrix Hbm. The model matrix Hbm is the same size as the binary base matrix Hb, with each binary entry (i,j) of the base matrix Hb replaced to create the model matrix Hbm. Each 0 in Hb is replaced by a blank or negative value (e.g., by –1) to denote a z(z all-zero matrix, and each 1 in Hb is replaced by a circular shift size p(i,j)(0. The model matrix Hbm can then be directly expanded to H. 

Hb is partitioned into two sections, where Hb1 corresponds to the systematic bits and Hb2 corresponds to the parity-check bits, such that 
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Section Hb2 is further partitioned into two sections, where vector hb has odd weight, and H(b2 has a dual-diagonal structure with matrix elements at row i, column j equal to 1 for i=j, 1 for i=j+1, and 0 elsewhere:
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The base matrix has hb(0)=1, hb(mb-1)=1, and a third value hb(j), 0<j<(mb-1) equal to 1. The base matrix structure avoids having multiple weight-1 columns in the expanded matrix.

In particular, the non-zero submatrices are circularly right shifted by a particular circular shift value. Each 1 in H(b2 is assigned a shift size of 0, and is replaced by a z(z identity matrix when expanding to H. The two 1s located at the top and the bottom of hb are assigned equal shift sizes, and the third 1 in the middle of hb is given an unpaired shift size. The unpaired shift size is 0.
A base model matrix is defined for the largest code length (n=2304) of each code rate. The set of shifts {p(i,j)} in the base model matrix are used to determine the shift sizes for all other code lengths of the same code rate. Each base model matrix has nb=24 columns, and the expansion factor zf is equal to n/24 for code length n. Here f is the index of the code lengths for a given code rate, f=0, 1, 2, … 18. For code length n=2304 the expansion factor is designated z0=96. 

For code rates 1/2, 3/4 A and B code, and 2/3 B code, and 5/6 code, the shift sizes {p(f, i, j)} for a code size corresponding to expansion factor zf are derived from {p(i,j)} by scaling p(i,j) proportionally, 
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where (x( denotes the flooring function which gives the nearest integer towards ‑(. 

For code rate 2/3 A code, the shift sizes {p(f, i, j)} for a code size corresponding to expansion factor zf are derived from {p(i,j)} by using a modulo function 
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Rate 1/2:
-1 94 73 -1 -1 -1 -1 -1 55 83 -1 -1  7  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 27 -1 -1 -1 22 79  9 -1 -1 -1 12 -1  0  0 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 24 22 81 -1 33 -1 -1 -1  0 -1 -1  0  0 -1 -1 -1 -1 -1 -1 -1 -1

61 -1 47 -1 -1 -1 -1 -1 65 25 -1 -1 -1 -1 -1  0  0 -1 -1 -1 -1 -1 -1 -1

-1 -1 39 -1 -1 -1 84 -1 -1 41 72 -1 -1 -1 -1 -1  0  0 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 46 40 -1 82 -1 -1 -1 79  0 -1 -1 -1 -1  0  0 -1 -1 -1 -1 -1

-1 -1 95 53 -1 -1 -1 -1 -1 14 18 -1 -1 -1 -1 -1 -1 -1  0  0 -1 -1 -1 -1

-1 11 73 -1 -1 -1  2 -1 -1 47 -1 -1 -1 -1 -1 -1 -1 -1 -1  0  0 -1 -1 -1

12 -1 -1 -1 83 24 -1 43 -1 -1 -1 51 -1 -1 -1 -1 -1 -1 -1 -1  0  0 -1 -1

-1 -1 -1 -1 -1 94 -1 59 -1 -1 70 72 -1 -1 -1 -1 -1 -1 -1 -1 -1  0  0 -1

-1 -1  7 65 -1 -1 -1 -1 39 49 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0  0

43 -1 -1 -1 -1 66 -1 41 -1 -1 -1 26  7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0

Note that the R=1/2 code is designed such that after a model matrix row permutation of [0, 2, 4, 11, 6, 8, 10,

1, 3, 5, 7, 9] consecutive rows do not intersect, which may be used to increase decoding throughput in some

layered decoding architectures.

Rate 2/3 A code:

 3  0 -1 -1  2  0 -1  3  7 -1  1  1 -1 -1 -1 -1  1  0 -1 -1 -1 -1 -1 -1

-1 -1  1 -1 36 -1 -1 34 10 -1 -1 18  2 -1  3  0 -1  0  0 -1 -1 -1 -1 -1

-1 -1 12  2 -1 15 -1 40 -1  3 -1 15 -1  2 13 -1 -1 -1  0  0 -1 -1 -1 -1

-1 -1 19 24 -1  3  0 -1  6 -1 17 -1 -1 -1  8 39 -1 -1 -1  0  0 -1 -1 -1

20 -1  6 -1 -1 10 29 -1 -1 28 -1 14 -1 38 -1 -1  0 -1 -1 -1  0  0 -1 -1

-1 -1 10 -1 28 20 -1 -1  8 -1 36 -1  9 -1 21 45 -1 -1 -1 -1 -1  0  0 -1

35 25 -1 37 -1 21 -1 -1  5 -1 -1  0 -1  4 20 -1 -1 -1 -1 -1 -1 -1  0  0

-1  6  6 -1 -1 -1  4 -1 14 30 -1  3 36 -1 14 -1  1 -1 -1 -1 -1 -1 -1  0
Rate 2/3 B code:

 2 -1 19 -1 47 -1 48 -1 36 -1 82 -1 47 -1 15 -1 95  0 -1 -1 -1 -1 -1 -1

-1 69 -1 88 -1 33 -1  3 -1 16 -1 37 -1 40 -1 48 -1  0  0 -1 -1 -1 -1 -1

10 -1 86 -1 62 -1 28 -1 85 -1 16 -1 34 -1 73 -1 -1 -1  0  0 -1 -1 -1 -1

-1 28 -1 32 -1 81 -1 27 -1 88 -1  5 -1 56 -1 37 -1 -1 -1  0  0 -1 -1 -1

23 -1 29 -1 15 -1 30 -1 66 -1 24 -1 50 -1 62 -1 -1 -1 -1 -1  0  0 -1 -1

-1 30 -1 65 -1 54 -1 14 -1  0 -1 30 -1 74 -1  0 -1 -1 -1 -1 -1  0  0 -1

32 -1  0 -1 15 -1 56 -1 85 -1  5 -1  6 -1 52 -1  0 -1 -1 -1 -1 -1  0  0

-1  0 -1 47 -1 13 -1 61 -1 84 -1 55 -1 78 -1 41 95 -1 -1 -1 -1 -1 -1  0

Note that the R=2/3 B code is designed such that after a model matrix row permutation of [0, 3, 6, 1, 4, 7, 2,

5] consecutive rows do not intersect, which may be used to increase decoding throughput in some layered

decoding architectures.

Rate 3/4 A code:

6  38  3 93 -1 -1 -1 30 70 -1 86 -1 37 38  4 11 -1 46 48  0 -1 -1 -1 -1 

62 94 19 84 -1 92 78 -1 15 -1 -1 92 -1 45 24 32 30 -1 -1  0  0 -1 -1 -1 

71 -1 55 -1 12 66 45 79 -1 78 -1 -1 10 -1 22 55 70 82 -1 -1  0  0 -1 -1 

38 61 -1 66  9 73 47 64 -1 39 61 43 -1 -1 -1 -1 95 32  0 -1 -1  0  0 -1 

-1 -1 -1 -1 32 52 55 80 95 22  6 51 24 90 44 20 -1 -1 -1 -1 -1 -1  0  0 

-1 63 31 88 20 -1 -1 -1  6 40 56 16 71 53 -1 -1 27 26 48 -1 -1 -1 -1  0 

Rate 3/4 B code:

-1 81 -1 28 -1 -1 14 25 17 -1 -1 85 29 52 78 95 22 92  0  0 -1 -1 -1 -1

42 -1 14 68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1  0  0 -1 -1 -1

-1 -1 20 -1 -1 63 39 -1 70 67 -1 38  4 72 47 29 60 5  80 -1  0  0 -1 -1

64  2 -1 -1 63 -1 -1  3 51 -1 81 15 94  9 85 36 14 19 -1 -1 -1  0  0 -1

-1 53 60 80 -1 26 75 -1 -1 -1 -1 86 77  1  3 72 60 25 -1 -1 -1 -1  0  0

77 -1 -1 -1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89  0 -1 -1 -1 -1  0

Rate 5/6 code:

 1 25 55 -1 47  4 -1 91 84  8 86 52 82 33  5  0 36 20  4 77 80  0 -1 -1

-1  6 -1 36 40 47 12 79 47 -1 41 21 12 71 14 72  0 44 49  0  0  0  0 -1

51 81 83  4 67 -1 21 -1 31 24 91 61 81  9 86 78 60 88 67 15 -1 -1  0  0

50 -1 50 15 -1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66 80 -1 -1  0

Insert new subclause 8.4.9.2.5.2
8.4.9.2.5.2 Code Rate and Block Size Adjustment

The LDPC code flexibly supports different block sizes for each code rate through the use of an expansion factor. Each base model matrix has nb=24 columns, and the expansion factor (z factor) is equal to n/24 for code length n. In each case, the number of information bits is equal to the code rate times the coded length n. 

Table 316b – LDPC Block Sizes and Code Rates

	n (bits)
	n (bytes)
	z factor
	k (bytes)
	Number of subchannels

	
	
	
	R=1/2
	R=2/3
	R=3/4
	R=5/6
	QPSK
	16QAM
	64QAM

	576
	72
	24
	36
	48
	54
	60
	6
	3
	2

	672
	84
	28
	42
	56
	63
	70
	7
	–
	–

	768
	96
	32
	48
	64
	72
	80
	8
	4
	–

	864
	108
	36
	54
	72
	81
	90
	9
	–
	3

	960
	120
	40
	60
	80
	90
	100
	10
	5
	–

	1056
	132
	44
	66
	88
	99
	110
	11
	–
	–

	1152
	144
	48
	72
	96
	108
	120
	12
	6
	4

	1248
	156
	52
	78
	104
	117
	130
	13
	–
	–

	1344
	168
	56
	84
	112
	126
	140
	14
	7
	–

	1440
	180
	60
	90
	120
	135
	150
	15
	–
	5

	1536
	192
	64
	96
	128
	144
	160
	16
	8
	–

	1632
	204
	68
	102
	136
	153
	170
	17
	–
	–

	1728
	216
	72
	108
	144
	162
	180
	18
	9
	6

	1824
	228
	76
	114
	152
	171
	190
	19
	–
	–

	1920
	240
	80
	120
	160
	180
	200
	20
	10
	–

	2016
	252
	84
	126
	168
	189
	210
	21
	–
	7

	2112
	264
	88
	132
	176
	198
	220
	22
	11
	–

	2208
	276
	92
	138
	184
	207
	230
	23
	–
	–

	2304
	288
	96
	144
	192
	216
	240
	24
	12
	8


Insert new subclause 8.4.9.2.5.3
8.4.9.2.5.3 Packet Encoding

The encoding block size k shall depend on the number of subchannels allocated and the modulation specified for the current transmission. Concatenation of a number of subchannels shall be performed in order to make larger blocks of coding where it is possible, with the limitation of not passing the largest block under the same coding rate (the block defined by the 64-QAM modulation). Table 333b below specifies the concatenation of subchannels for different allocations and modulations. The concatenation rule follows the subchannel concatenation rule for CC (Table 317) except that for LDPC the concatenation does not depend on the code rate.

For any modulation and FEC rate, given an allocation of Nsch subchannels, we define the following parameters:

ji:
parameter dependent on the modulation

Nsch:
number of allocated subchannels

F:
floor(Nsch/ ji)

M:
Nsch mod ji
The subchannel concatenation rule for CC in Table 317 is applied, noting that in Table 317 the parameter n is equal to Nsch, the parameter k is equal to F, and the parameter m is equal to M. The parameter ji for LDPC is determined as shown in Table 333b:

Table 333b(Parameter ‘j’ for LDPC
	j1
	j2
	j3
	j4
	Modulation

	24
	12
	8
	6
	QPSK

	12
	6
	4
	3
	16-QAM

	8
	4
	2
	2
	64-QAM


Control information and packets that result in a codeword size n of less than 576 bits are encoded using convolutional coding (CC) with appropriate code rates and modulation orders, as described in section 8.4.9.2.1.

Annex H

(informative)
LDPC direct encoding

The code is flexible in that it can accommodate various code rates as well as packet sizes. 

The encoding of a packet at the transmitter generates parity-check bits p=(p0, …, pm-1) based on an information block s=(s0, …, sk-1), and transmits the parity-check bits along with the information block. Because the current symbol set to be encoded and transmitted is contained in the transmitted codeword, the information block is also known as systematic bits. The encoder receives the information block s=(s0, …, sk-1) and uses the matrix Hbm to determine the parity-check bits. The expanded matrix H is determined from the model matrix Hbm. Since the expanded matrix H is a binary matrix, encoding of a packet can be performed with vector or matrix operations conducted over GF(2). 

One method of encoding is to determine a generator matrix G from H such that G HT = 0. A k-bit information block s1(k can be encoded by the code generator matrix Gk(n via the operation x = s G to become an n-bit codeword x1(n, with codeword x=[s p]=[s0, s1, …,sk-1, p0, p1, …,pm-1], where p0, . . . pm-1 are the parity-check bits; and s0, . . . sk-1 are the systematic bits.

Encoding an LDPC code from G can be quite complex. The LDPC codes are defined such that very low complexity encoding directly from H is possible. 

The following informative subsection shows two such methods. 

H.1 Method 1a
Encoding is the process of determining the parity sequence p given an information sequence s. To encode, the information block s is divided into kb = nbmb groups of z bits. Let this grouped s be denoted u,
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where each element of u is a column vector as follows
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Using the model matrix Hbm, the parity sequence p is determined in groups of z.  Let the grouped parity sequence p be denoted v,
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where each element of v is a column vector as follows
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Encoding proceeds in two steps, (a) initialization, which determines v(0), and (b) recursion, which determines v(i+1) from v(i), 0 ( i ( mb2.

An expression for v(0) can be derived by summing over the rows of Hbm to obtain



[image: image12.wmf](

)

(

)

(

)

(

)

å

å

-

=

-

=

=

1

0

1

0

,

,

0

b

b

b

k

j

m

i

j

i

p

k

x

p

j

u

P

v

P


(H.1)

where x , 1 ( x ( mb2, is the row index of hbm where the entry is nonnegative and unpaired, and Pi represents the z(z identity matrix circularly right shifted by size i.  Equation (1) is solved for v(0) by multiplying by 
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 since p(x,kb) represents a circular shift.

Considering the structure of H(b2, the recursion can be derived as follows,
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(H.3)

where
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Thus all parity bits not in v(0) are determined by evaluating Equation (2) and (3) for 0 ( i ( mb2.

Equations (1) to (3) completely describe the encoding algorithm.  These equations also have a straightforward interpretation in terms of standard digital logic architectures.  Since the non‑zero elements p(i,j) of Hbm represent circular shift sizes of a vector, all products of the form Pp(i,j)u(j) can be implemented by a size‑z barrel shifter.

H.2 Method 1b
Equivalently, Method 1 can be implemented in a parallel fashion where almost all parity check parity bits are generated simultaneously. The initialization and the recursion steps of Method 1 become

1) Initialization. The parity check bit vector 
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(H.4)

2) Parallel computation. The parity check bit vectors 
[image: image20.wmf])

1

(

~

)

1

(

-

b

m

v

v

 are concurrently computed by



[image: image21.wmf]1

,

,

1

)

0

(

)

(

)

(

1

0

1

)

,

(

1

)

,

(

-

=

+

÷

÷

ø

ö

ç

ç

è

æ

=

å

å

å

-

=

-

=

-

=

b

k

j

m

i

q

k

q

p

m

i

q

j

q

p

m

i

v

P

j

u

P

i

v

b

b

b

b

L


(H.5)

The parallel encoding method may significantly reduced the latency at the expense of extra storage for the sum 
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H.3 Method 2
For efficient encoding of LDPC, H are divided into the form
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where 
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Let v=(u, p1, p2) where u denotes the systematic part, p1 and p2 combined denote the parity part, p1 has length z, and p2 has length 
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. The definition equation H . v t = 0 splits into two equations, as in equations (2) and (3) 
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and
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Define 
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and
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As a result, the encoding procedures and the corresponding operations can be summarized below and illustrated in Figure H.1.

H.3 Encoding procedure
Step 1) Compute 
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Step 3) Compute 
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Step 4) Compute 
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Fig. H.1 ( Block diagram of the encoder architecture for the block LDPC code.

<NOTE to Editor: The remaining items below update the signaling for LDPC>

<In 8.4.4.3 DL Frame Prefix p. 232, line 48, Table 266a, “Coding_Indication” row, insert a line in the “Notes” column “0b100 – LDPC encoding used on DL-MAP”, and modify existing line “0b100 to 0b111 – Reserved” to “0b101 to 0b111 – Reserved”>

<In 11.3.1, p. 390, line 57 add the following text>

11.3.1.1 Uplink burst profile encodings

[Insert the following text in the “Value” column of the first row (“FEC code type and modulation type”) of Table 355 p. 663 of 802.16-REVd/D5, and change “26..255=Reserved” to “41..255=Reserved”]

26=QPSK (LDPC) 1/2

27=QPSK (LDPC) 2/3 A code

28=QPSK (LDPC) 3/4 A code

29=16-QAM (LDPC) 1/2

30=16-QAM (LDPC) 2/3 A code

31=16-QAM (LDPC) 3/4 A code

32=64-QAM (LDPC) 1/2

33=64-QAM (LDPC) 2/3 A code

34=64-QAM (LDPC) 3/4 A code

35=QPSK (LDPC) 2/3 B code

36=QPSK (LDPC) 3/4 B code

37=16-QAM (LDPC) 2/3 B code

38=16-QAM (LDPC) 3/4 B code

39=64-QAM (LDPC) 2/3 B code

40=64-QAM (LDPC) 3/4 B code

<In 11.4, p. 394, line 56 add the following text>

11.4.2 Downlink burst profile encodings

[Insert the following text in the “Value” column of the first row (“FEC code type”) of Table 361 p. 668 of 802.16-REVd/D5, and change “26..255=Reserved” to “41..255=Reserved”]

26=QPSK (LDPC) 1/2 

27=QPSK (LDPC) 2/3 A code

28=QPSK (LDPC) 3/4 A code

29=16-QAM (LDPC) 1/2

30=16-QAM (LDPC) 2/3 A code

31=16-QAM (LDPC) 3/4 A code

32=64-QAM (LDPC) 1/2

33=64-QAM (LDPC) 2/3 A code

34=64-QAM (LDPC) 3/4 A code

35=QPSK (LDPC) 2/3 B code

36=QPSK (LDPC) 3/4 B code

37=16-QAM (LDPC) 2/3 B code

38=16-QAM (LDPC) 3/4 B code

39=64-QAM (LDPC) 2/3 B code

40=64-QAM (LDPC) 3/4 B code

<In 11.8.3.7.2 OFDMA MSS demodulator, p. 408, line 24 change the “Length” column entry of “1” to “2”, and insert the following two entries after line 31 in the “Value” column>

Bit#8: LDPC

Bits#9-15: Reserved; shall be set to zero

<In 11.8.3.7.2 OFDMA MSS demodulator, p. 408, line 32 add the following text>

11.8.3.7.3 OFDMA MSS modulator

[Copy the table from 11.8.3.7.3, and insert the following text in the “Value” column of the first row, and change “Bits#6-7: Reserved; shall be set to zero” to “Bit#7: Reserved; shall be set to zero”]

Bit#6: LDPC
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Abstract


This submission contains the verbatim text, in Word Document format, plus all the associated tables, figures and equations, that were incorporated into the IEEE 802.16e-2005 specification � REF _Ref142196159 \r \h ��[1]�.  The normative Low Density Parity Check (LDPC) code definition and payload encoding procedure, as well as an informative Annex on LDPC encoding directly from the H-matrix, are included.  These features are optional in the 802.16e and 802.22 standards. Because this text has not been altered, it includes the original directives to the 802.16e editor, which should be interpreted by the 802.22 PHY editors, but not necessarily replicated verbatim.  (Some more known shortcomings are listed below.)  Fortunately, the transcription errors that were introduced when the Word Document draft was transcribed into Framemaker (and still persist in the IEEE 802.16e-2005 specification) do not exist in this document.





A revision of the LDPC code definition and payload encoding procedure for 802.16e should replace subclause 8.5.2.3 “Low Density Parity Check codes (LDPC) mode (Optional)” in the currently proposed 802.22 draft � REF _Ref142214709 \r \h ��[2]�.  There are several issues which the IEEE 802.22 editors and/or membership will have to address.  See “Known Shortcomings” immediately below on page 2.  The “Verbatim 802.16e LDPC Specification” section follows, on pages 3 to 12, which should be transferred to the 802.22 draft.  Finally, a “References” section containing the two cited documents in this Abstract is on page 13 at the very end of this document.
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